Instructor: N. E. Schore, email neschore@ucdavis.edu

Office hours: TBA, but most likely between lecture and lab; we’ll talk about it in class


Supplemental Materials: Molecular Models (any set available is O.K.)

Exams and Grading:

<table>
<thead>
<tr>
<th>Exam</th>
<th>Date</th>
<th>Chapters</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam I</td>
<td>Monday, Oct 26, 9 AM</td>
<td>10-13</td>
<td>100 pts</td>
</tr>
<tr>
<td>Exam II</td>
<td>Monday, Nov 9, 9 AM</td>
<td>14-16</td>
<td>100 pts</td>
</tr>
<tr>
<td>Exam III</td>
<td>Monday, Nov 16, 9 AM</td>
<td>17-18</td>
<td>100 pts</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>300 pts</td>
</tr>
</tbody>
</table>

Grading is determined by absolute quality of work in exams. There is no preset curve. *There is no quota or limit for any letter grades.* You could all get A's! If you have a legitimate reason to miss an exam, let me know *in advance.* Your grade will be determined by the score of the other two exams, which will be scaled to count 150 points each. *No make up exams* will be given.

Regrading: if you think you deserve more points on an exam question than you got, write a short note indicating what I should look at, pin it to your test, and leave it with me. The regraded test will be returned in a day or two. *Do not make any marks or changes on the test itself or it will not be regraded.*

Topics and their order of coverage are given below. *Reading ahead* will help you get the most out of the lectures in the class. You should do all in-chapter Examples and a reasonable selection of end-of-chapter Problems as guides for your studying and for self-testing of your mastery of the subject matter. The answers to the problems are given in detail in the Study Guide. Work on and make certain you understand the Examples given within the chapters *before* proceeding with the Problems at the end.

CHAPTER 10: Alcohols and Thiols *(skip Section 10.7)*
CHAPTER 11: Ethers, Epoxides and Sulfides
CHAPTER 12: Infrared Spectroscopy
CHAPTER 13: Nuclear Magnetic Resonance Spectroscopy *(skip Section 13.10)*
CHAPTER 14: Mass Spectrometry (up to Section 14.2 part C)
CHAPTER 15: Organometallic Compounds *(only* Section 15.1)
CHAPTER 16: Aldehydes and Ketones
CHAPTER 17: Carboxylic Acids *(skip Section 17.9—we will come back to that in Chapter 19)*
CHAPTER 18: Functional Derivatives of Carboxylic Acids

Goals of the course

1) To understand the language of organic chemistry and the importance of organic molecules in biology, technology, industry, business, and daily life

2) To understand how the structure of organic molecules relates to their reactivity, stability, and function, with a particular focus on the structure and reactions of alcohols, ethers and carbonyl compounds

3) To develop problem-solving skills and strategy that are important for chemistry, biochemistry and engineering, with a particular focus on mechanism, multi-step synthesis, and spectroscopy